Solving (Weighted) Partial MaxSAT through Satisfiability Testing
نویسندگان
چکیده
Recently, Fu and Malik described an unweighted Partial MaxSAT solver based on successive calls to a SAT solver. At the kth iteration the SAT solver tries to certify that there exist an assignment that satisfies all but k clauses. Later Marques-Silva and Planes implemented and extended these ideas. In this paper we present and implement two Partial MaxSAT solvers and the weighted variant of one of them. Both are based on Fu and Malik ideas. We prove the correctness of our algorithm and compare our solver with other (Weighted) MaxSAT and (Weighted) Partial MaxSAT solvers.
منابع مشابه
Symmetry Breaking for Maximum Satisfiability
Symmetries are intrinsic to many combinatorial problems including Boolean Satisfiability (SAT) and Constraint Programming (CP). In SAT, the identification of symmetry breaking predicates (SBPs) is a well-known, often effective, technique for solving hard problems. The identification of SBPs in SAT has been the subject of significant improvements in recent years, resulting in more compact SBPs a...
متن کاملImproving WPM2 for (Weighted) Partial MaxSAT
Weighted Partial MaxSAT (WPMS) is an optimization variant of the Satisfiability (SAT) problem. Several combinatorial optimization problems can be translated into WPMS. In this paper we extend the state-of-the-art WPM2 algorithm by adding several improvements, and implement it on top of an SMT solver. In particular, we show that by focusing search on solving to optimality subformulas of the orig...
متن کاملDiversified Top-k Partial MaxSAT Solving
We introduce a diversified top-k partial MaxSAT problem, a combination of partial MaxSAT problem and enumeration problem. Given a partial MaxSAT formula F and a positive integer k, the diversified top-k partial MaxSAT is to find k maximal solutions for F such that the k maximal solutions satisfy the maximum number of soft clauses of F . This problem can be widely used in many applications inclu...
متن کاملOn Partitioning for Maximum Satisfiability
Partitioning formulas is motivated by the expectation to identify easy to solve subformulas, even though at the cost of having more formulas to solve. In this paper we suggest to apply partitioning to Maximum Satisfiability (MaxSAT), the optimization version of the well-known Satisfiability (SAT) problem. The use of partitions can be naturally combined with unsatisfiability-based algorithms for...
متن کاملA New Algorithm for Weighted Partial MaxSAT
We present and implement aWeighted Partial MaxSAT solver based on successive calls to a SAT solver. We prove the correctness of our algorithm and compare our solver with other Weighted Partial MaxSAT solvers.
متن کامل